Симбиоз вируса гепатита и человека
Фагом. Наш симбиоз с вирусами в слизистых
глава 29
глава 30
глава 31
Содержание
Раньше мы писали, что в нашем теле помимо 40 триллионов полезных бактерий имеют постоянную прописку еще и около 80 триллионов вирусов, и живем мы со всеми ними в условиях симбиоза — полезно и тем и другим и нам.
Оказалось, что живут эти вирусы в наших слизистых оболочках, что вполне логично, ведь именно слизистые оболочки — это крепостные стены, которые в первую очередь атакуются патогенными бактериями. Наши собственные средства иммунной защиты, в том числе армии клеток-макрофагов — это внутренний периметр обороны, а вот позиции на внешнем периметре занимают как раз вирусы-бактериофаги — наши союзники.
Немного непривычно относиться к вирусам как к союзникам, да? Среди вирусов конечно есть «отщепенцы», которые вызывают массовые чихания и кашляния, а то и что-то посерьезнее, и все-таки наши слизистые оболочки населяют вирусы-друзья, вирусы-союзники, партнеры, без которых мы бы не смогли выжить!
И это касается не только нас, но и всякой другой живности — от кораллов до слонов. Все они в своих слизистых оболочках содержат толпы друзей вирусов-бактериофагов.
Более того. Вирусы-бактериофаги могут проникать из слизистых оболочек прямо внутрь наших клеток! Наши собственные клетки эпителия захватывают их и отправляют в вакуолях-посылках в другие клетки, расположенные под эпителием, прямо в клетки наших органов! Ученые прикинули, что таким образом клетки наших тканей захватывают до 30 миллиардов вирусов-фагов ежедневно! Ученые даже ввели термин «ФАГОМ» (по аналогии с термином «геном» и др.), под которым они понимают совокупность всех вирусов-бактериофагов в организме, которые участвуют в иммунных реакциях, а может и не только в них.
Оказалось, что фагомы здоровых и больных людей сильно отличаются, так что в наших руках сейчас окажутся принципиально новые методы как диагностики заболеваний, так и их излечения! Метод пересаживания фагомов наверняка будет опробован, и вероятнее всего он даст такие же хорошие результаты, как и метод пересаживания бактериальных сообществ, и вместе с пробиотиками мы будем принимать провирусики:)
Также было открыто, что лейкоциты в результате соприкосновения с этими вирусами-фагами начинают вырабатывать молекулы, связанные с иммунной реакцией, нацеленность которых пока неясна. Всё это совершенно поразительно. Эти открытия поистине открывают новые страницы в генетике, микробиологии, физиологии, иммунологии, и мы снова чувствуем себя лишь в самом начале пути познания тайн жизни.
Пора перестать относиться к окружающему нас миру бактерий и вирусов как к злобному и агрессивному. Пора перестать воспринимать их как врагов, потому что такое отношение к ним вредит только нам самим, способствуя чрезмерному использованию всяких ядовитых бактерицидных веществ (типа триклозана) в мыле, шампунях, ополаскивателях рта и зубных пастах и т.д.
Конечно, корпорации-производители этих средств заинтересованы в том, чтобы как можно сильнее нас напугать, чтобы мы побежали в магазин за очередным супер-бактерицидным и противовирусным мылом. Но эта паранойя приводит лишь к уничтожению полезных для нас бактериальных и вирусных сообществ, тем самым делая нас более подверженными болезням, что вызывает только новые потоки агрессивной рекламы бактерицидных средств и крики «мы же говорили, бактерии опасны, надо убить их все до единой!»
Я уж не говорю о чисто психологическом ущербе такой позиции, когда окружающий нас микромир воспринимается злобным и враждебным, когда боишься лишний раз покопаться руками в земле, погладить кошку или пошлепать босиком по лужам. Разумеется, после земли, лужи и кошки нужно сполоснуть руки или ноги, чтобы не подцепить паразитов, но вот эту эпидемию использования агрессивных бактерицидных средств надо прекращать, чтобы не стать жертвами всяких триклозанов и прочей гадости.
Даже с домашней кошкой надо соблюдать меры предосторожности во время игры с ней, а то поцарапает. То же с бактериями и вирусами — разумное применение санитарии совершенно необходимо, но сейчас мы перешли все разумные границы, в результате чего безжалостно убиваем собственных союзников, обеспечивающих наше выживание — полезных бактерий и полезных вирусов.
«Прирученные» вирусы защищают человека
Симбиоз – это не менее важный фактор эволюции, чем конкуренция. Большую роль в симбиотических системах играют вирусы. Теплокровный организм – идеальное место для размножения бактерий, и если бы не иммунная система – бактерии просто уничтожили бы нас. Иммунную систему сформировали «прирученные» животными вирусы. Только симбиоз с вирусами помогает человечеству выжить.
Доктор биологических наук, сотрудник Палеонтологического института РАН Александр Марков рассказывает, как эволюция симбиотической системы животных и вирусов привела к созданию иммунной системы, необходимой для существования теплокровного организма, и о той важнейшей роли, которую играют вирусные механизмы в жизни животных и растений.
– Александр, давайте начнем с какого-нибудь яркого примера симбиоза, в котором участвуют вирусы.
– Я могу привести просто поразительный пример такого симбиоза. Совсем недавно появилась статья американских биологов из Йелоустонского национального парка (Yellowstone National Park) Там есть горячие источники и в некоторых местах почва раскалена до 50-60 градусов. И на этой почве растет трава. Как она выдерживает такую высокую температуру? Нормальное растение не может расти на такой раскаленной почве. Было установлено, что в этой траве имеется симбиотический гриб, который живет внутри клеток травы. Если удалить гриб, то растение выжить при такой температуре не может, но и гриб тоже не может! Дальнейшее исследование показало, что есть третий участник – гриб обязательно должен быть заражен определенным вирусом. Если убрать вирус, что удалось сделать в эксперименте, то гриб вместе с растением теряют эту термоустойчивость и на раскаленной почве расти не могут. То есть действительно вирусы часто входят в состав симбиотических комплексов. И, кроме того, поскольку вирусы способны переносить фрагменты генов или целые гены от одного организма к другому, участвуют в глобальном процессе кооперации, информационного обмена. В процессе эволюции вирусы играют большую роль.
– Чем вирусы отличаются от бактерий?
– У вируса нет клетки. У них есть наследственная информация в виде молекулы РНК или ДНК и у них есть белковая оболочка, и больше ничего. Вирус – это, конечно, не самостоятельная система, можно сказать, что это часть мирового генетического банка.
– Давайте подробнее остановимся на роли вирусов в эволюции животного мира.
В эволюции животных можно привести, как минимум, три примера, когда вирусы или вирусоподобные объекты – мобильные кусочка генома – сыграли важную положительную роль.
Во-первых, знаменитый фермент – теломераза по своему происхождению, скорее всего, вирусный объект. Дело в том, что теломераза – это специальный белок, который занимается тем, что он достраивает кончики хромосом. Согласно одной из теорий, многоклеточные организмы стареют, потому что при каждом клеточном делении хромосома немножечко укорачивается и возникает опасность, что хромосомы в конце концов так укоротятся, что утратят функциональность и каким-то образом нужно эти кончики, которые не воспроизводятся при копировании, достраивать. Российский ученый Алексей Оловников предположил, что должен существовать специальный фермент для достройки кончиков хромосом. И этот фермент действительно открыли и назвали теломеразой. Это фермент, который спасает наши клетки от необратимого старения.
Но причем здесь вирусы? Дело в том, что, как сейчас считается, этот белок теломераза имеет вирусное происхождение. Вирус – это специальное устройство (я говорю сейчас о так называемых РНК-содержащих вирусах), это специальное устройство для записи информации в геном других организмов. Он содержит РНК, попадает в клетку. И та информация, которая записана в этой вирусной РНК, она переписывается в форме ДНК уже в геном, скажем, человеческой клетки. Вирус кодирует необходимые ферменты для для записи информации в геном.
Чтобы синтезировать ДНК, потерянную на кончиках хромосомы используется этот же механизм, то есть теломераза содержит в своем составе кусочек РНК, РНК-матрицу, на основе которой тем же самым вирусным способом дописывается кусочек ДНК по этой матрице, и хромосомы таким образом достраиваются. Каким-то образом предкам всех высших организмов (эукариотам) удалось «приручить» какой-то РНК-вирус и использовать его таким образом, чтобы он достраивал кончики хромосом. Вирусы сами по нельзя назвать живыми организмами, но, попадая в клетку, они начинают работать как часть этой клетки. И это далеко не всегда имеет патологические последствия, далеко не все вирусы вызывают болезни.
Удивительно, но по последним данным, 40-45% всего генома человека – это всевозможные мобильные и повторяющиеся элементы, обладающие способностью перемещаться по геному, то есть, грубо говоря, это бывшие вирусы или размножившиеся вирусоподобные объекты, и это до 45% генома человека.
– То есть мы можем сказать, что молекула ДНК – это симбиотическая молекула. Когда мы видим сложнейшую молекулу ДНК, то непонятно как могло возникнуть столь сложное устройство? Но в действительности она возникла не под воздействием единичных мутаций, а в результате симбиотического обмена – то есть фактически собиралась из строительных блоков.
– Совершенно верно. Это – блочный принцип эволюции.
Второй случай, когда в эволюции высших позвоночных животных пригодились вирусы – это система приобретенного иммунитета. Что происходит, когда мы вырабатываем иммунитет к новой болезни? Ведь антитела вырабатываются даже к синтетическим веществам, которых в природе нет.
В геноме человека нет готовых генов антител, а есть набор заготовок. Ген антитела собирается из трех кусочков, причем в геноме есть сотни вариантов первого кусочка, несколько десятков вариантов второго кусочков и несколько вариантов третьего, их надо собрать. Вот в каждом лимфоците происходит вырезание, берется один кусочек ДНК первого типа, один второго, один третьего, и они склеиваются вместе в работающий ген, и уже с него синтезируется антитело. Оно потом еще может дополнительно доводиться до нужной кондиции, но начальный этап – это нарезание и сбор из кусочков гена. Так происходит редактирование генома.
Кто совершает эти операции – нарезку, перемещение? Это делают белки, тоже заимствованные у мобильных генетических элементов – у вирусов. Есть так называемые транспонзоны (Transposon) это давно «прирученный» вирус, потерявший способность передаваться между организмами, эти вирусы передаются только от родителей к потомкам, но они сохранили подвижность внутри генома. Транспозон кодирует белок, который способен этот транспозон вырезать и перенести на новое место, размножить. Они могут размножаться, они и составляют до 40% нашего генома. Для нарезки блоков иммунных молекул были тоже использованы ферменты мобильных генетических элементов.
– Необходимо подчеркнуть, что роль иммунной системы чрезвычайно важна. Она позволяет человеку выжить и противодействовать атакам микроорганизмов.
– Посудите сами: теплокровное млекопитающее – это просто инкубатор. 37 градусов постоянная температура тела – это же рай для бактерии. Если бы не иммунная система, нас бы просто съели.
И третий важный пример, того что принесли вирусы в симбиотическую систему, которой является организм животных. Недавно был обнаружен ген в геноме млекопитающих, который необходим для развития плаценты – того органа, который осуществляет обмен между организмом матери и плодом, благодаря которому сравнительно долго плод может безопасно развиваться в утробе матери. А то что это занимает довольно продолжительное, кстати, считают важнейшей предпосылкой для развития мозга и, в конечном счете, для появления разума.
Был найдет регуляторный ген, который необходим для развития плаценты. Структура этого гена оказалась сходной со структурой одного из мобильно-генетических элементов. То есть это опять-таки «прирученный» РНК-вирус.
– Александр, мы приходим к выводу, что симбиоз играет гораздо более важную роль, чем это может показаться. Мы все слышали, о таких симбиотических системах, в которых насекомые опыляют растения. Но то, что вы рассказали, говорит о том, что симбиоз – это действительно магистральное развитие всей эволюции, именно симбиоз может дать объяснение, почему организмы могут так быстро усложняться и приобретать совершенно новые функции и возможности.
– Мне и представляется эта тема очень важной, но до сих пор в биологии сохраняется отношение к симбиозу, как к некоему курьезу, какой-то причуде матушки-природы. Но если взять факты, то мы видим, что это не просто типично, но это основа и прогрессивной эволюции и функционирования биосферы. Это – всеобщее явление.
Когда был открыт один из первых случаев симбиоза – оказалось, что лишайник – это симбиотический комплекс гриба и водоросли –ученые очень удивились: надо же, чудеса какие. Мы думали, это растение, а это какой-то немыслимый комплекс – и гриб, и водоросли вместе переплелись, и получился лишайник. Но с тех пор уже столько открыто еще более удивительных симбиотических систем, что уже пора перестать удивляться, а включить это явление в общую теорию как неотъемлемый ее элемент.
– То есть, можно сказать, главное в природе это не всеобщая борьба и взаимное уничтожение, а синтез, взаимопомощь и сотрудничество.
Уникальный случай тройного симбиоза: вирус помогает бактерии защищать тлю от врагов
Опаснейшими врагами тлей являются наездники, личинки которых развиваются в теле тли, пожирая ее изнутри. «Защитная» симбиотическая бактерия Hamiltonella defensa, живущая в клетках некоторых тлей, вырабатывает токсины, смертельные для личинок наездников. Американские энтомологи экспериментально показали, что эффективную защиту тлей от наездников обеспечивают не любые бактерии H. defensa, а только зараженные вирусом-бактериофагом APSE. Гены токсичных белков, необходимых для уничтожения личинок наездника, находятся в геноме вируса, а не бактерии. Это один из первых описанных случаев, когда мутуалистические (взаимовыгодные) отношения двух организмов (в данном случае — тли и бактерии) обеспечиваются благодаря вирусу, выступающему в роли необходимого третьего компонента симбиотической системы.
Многие насекомые буквально нашпигованы различными симбиотическими микробами. Симбионты помогают своим хозяевам решать многие жизненные задачи: от синтеза незаменимых аминокислот и витаминов до переваривания химически чистой целлюлозы, фиксации атмосферного азота и борьбы с сорняками на грибных плантациях (см. ссылки внизу).
В круг задач, выполняемых бактериями — симбионтами насекомых, входит и защита хозяев от опаснейших паразитов — наездников (о наездниках см. в заметке: Тлевые наездники эффективнее паразитируют на тлях, когда у них разная пищевая специализация, «Элементы», 25.09.2008). Именно эту роль взяла на себя гамма-протеобактерия Hamiltonella defensa, обитающая в клетках многих насекомых, питающихся растительными соками, в том числе тлей. Гамильтонелла, как и многие другие внутриклеточные симбионты, наследуется по материнской линии в ряду поколений насекомых-хозяев (бактерия проникает в яйца, откладываемые зараженной самкой).
Ранее было замечено, что разновидности (штаммы) гамильтонеллы различаются по своим защитным свойствам: одни обеспечивают надежную защиту гороховой тли (Acyrthosiphon pisum) от наездника Aphidius ervi, убивая до 80–90% личинок паразита, тогда как другие защищают хозяина гораздо хуже или не защищают вовсе. Кроме того, обнаружилось, что защитные свойства гамильтонеллы коррелируют с зараженностью бактерии вирусом-бактериофагом, получившим название APSE (A. pisum secondary endosymbiont). Известно несколько разновидностей этого вируса, причем в геноме каждой разновидности содержатся гены белков, токсичных для животных. Было высказано предположение, что именно эти токсины, закодированные в вирусном геноме, используются симбиотическим комплексом «тля—бактерия» для борьбы с общим врагом — личинками наездника. Это предположение косвенно подтвердилось в ходе сравнения защитных свойств трех штаммов гамильтонеллы, два из которых имеют в своем геноме встроенный геном разновидности вируса APSE-3, а третий не заражен вирусом. Оказалось, что первые два штамма обеспечивают очень высокий уровень защиты тли от наездника, а третий не обладает этим свойством.
Этих данных, однако, было недостаточно для того, чтобы считать роль вируса APSE в защите тли от наездника доказанной. Дело в том, что в данном симбиотическом комплексе участвуют трое — тля, бактерия и вирус; у каждого из трех компонентов есть свой собственный геном, причем каждый из трех геномов существует в виде множества вариаций. Поэтому, например, если комплекс «тля + бактерия + вирус» защищен от паразитов, а комплекс «тля + бактерия» — нет, то причиной может быть не только присутствие или отсутствие вируса, но и генетические различия между штаммами (линиями, клонами) бактерий и тлей. В принципе, наличие вируса в геноме тех штаммов бактерии, которые защищают тлю от наездников, может оказаться случайным совпадением.
Чтобы строго доказать роль вируса во взаимовыгодном сотрудничестве бактерии и тли, нужно было получить генетически чистые линии тлей и бактерий, различающиеся только наличием или отсутствием в бактериальном геноме встроенного фага APSE.
Именно это и сделали американские энтомологи из университетов Джорджии и Аризоны, опубликовавшие результаты своих исследований в последнем номере журнала Science. Чистую линию (клон) генетически идентичных тлей получить нетрудно, так как тли способны размножаться партеногенетически: самки откладывают неоплодотворенные яйца, из которых вылупляются точные генетические копии матери. Нетрудно получить и генетически идентичных тлей, различающихся только наличием или отсутствием гамильтонеллы. Для этого достаточно «вылечить» часть клона от симбиотической бактерии при помощи антибиотиков. Намного труднее получить генетически идентичных бактерий, различающихся только наличием или отсутствием встроенного фага. Понятно, что никакими антибиотиками встроенный вирусный геном из бактериальной хромосомы не выскрести. И вот тут ученым просто повезло. Они обнаружили, что гамильтонеллы в череде поколений иногда случайно «теряют» встроенного фага в результате делеции (см. deletion).
Это позволило ученым вывести три линии генетически идентичных тлей: 1) с гамильтонеллой, зараженной вирусом APSE-3, 2) с точно такой же гамильтонеллой, но без вируса; 3) без гамильтонеллы. Этих тлей отдавали «на растерзание» наездникам Aphidius ervi, которые откладывали в них свои яйца. Затем ученые подсчитывали в каждой из трех линий процент выживших личинок наездника (который равен проценту погибших тлей, так как в каждую тлю наездник откладывает одно яйцо, после чего выжить может только кто-то один: либо тля, либо личинка наездника).
В первой из трех линий личинки наездника сумели погубить лишь около 6% тлей, во второй и третьей — около 80%. Эти результаты доказывают, что вирус APSE действительно необходим для защиты тли от наездника.
Интересно, что содержание в своем теле защитных симбионтов не является «бесплатным удовольствием» ни для тлей, ни для бактерий. Ранее было показано, что при выращивании в лаборатории в отсутствие наездников тли, не зараженные гамильтонеллой, размножаются успешнее зараженных, и в результате со временем популяция тлей может полностью освободиться от бактерии. То же самое происходит и в паре «бактерия—вирус»: оказалось, что гамильтонеллы в лабораторных линиях полностью освобождаются от вируса за 3–4 года. Разумеется, ситуация меняется на обратную, если тли регулярно подвергаются нападению наездников. В этом случае естественный отбор благоприятствует как распротранению гамильтонеллы в популяции тлей, так и распространению вируса APSE в популяции гамильтонелл.
Ранее «Элементы» рассказывали о том, как Наездники подавляют иммунную защиту своих жертв при помощи прирученных вирусов («Элементы», 19.02.2009). Теперь выясняется, что в «эволюционной гонке вооружений» (evolutionary arms race) наездников и их жертв симбиотические вирусы участвуют в игре на обеих сторонах. Фактически, насекомые ведут друг с другом настоящую «вирусологическую войну».
Данное исследование интересно тем, что в нем впервые продемонстрирована роль бактериофагов в регулировании мутуалистических (взаимовыгодных) отношений между симбиотическими бактериями и их хозяевами. Ранее был уже описан случай, когда вирус делает возможным взаимовыгодное сотрудничество между грибом и растением (см.: Растение, гриб и вирус объединились, чтобы втроем противостоять высоким температурам, «Элементы», 29.01.2007), но у бактериофагов такие способности ранее не были известны. С другой стороны, известен ряд случаев, когда бактериофаги помогают патогенным бактериям (например, холерному вибриону) в их борьбе с защитными системами хозяев.
Исследование еще раз показало, что посредством вирусов бактерии могут очень быстро приобретать новые полезные для себя свойства. Это может иметь далеко идущие экологические последствия — особенно если бактерия вовлечена в тесные мутуалистические или антагонистические взаимоотношения с другими организмами. Не исключено, что та поразительная скорость, с которой насекомые приспосабливаются к новым условиям (например, к новым кормовым растениям) или вырабатывают устойчивость к ядам, отчасти объясняется деятельностью фагов, проводящих разнообразные генно-инженерные эксперименты на бактериях — симбионтах насекомых.
Источник: Kerry M. Oliver, Patrick H. Degnan, Martha S. Hunter, Nancy A. Moran. Bacteriophages Encode Factors Required for Protection in a Symbiotic Mutualism // Science. 2009. V. 325. P. 992-994.